Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Plant Biotechnol J ; 20(11): 2135-2148, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35869808

RESUMEN

Improving biological nitrogen fixation (BNF) in cereal crops is a long-sought objective; however, no successful modification of cereal crops showing increased BNF has been reported. Here, we described a novel approach in which rice plants were modified to increase the production of compounds that stimulated biofilm formation in soil diazotrophic bacteria, promoted bacterial colonization of plant tissues and improved BNF with increased grain yield at limiting soil nitrogen contents. We first used a chemical screening to identify plant-produced compounds that induced biofilm formation in nitrogen-fixing bacteria and demonstrated that apigenin and other flavones induced BNF. We then used CRISPR-based gene editing targeting apigenin breakdown in rice, increasing plant apigenin contents and apigenin root exudation. When grown at limiting soil nitrogen conditions, modified rice plants displayed increased grain yield. Biofilm production also modified the root microbiome structure, favouring the enrichment of diazotrophic bacteria recruitment. Our results support the manipulation of the flavone biosynthetic pathway as a feasible strategy for the induction of biological nitrogen fixation in cereals and a reduction in the use of inorganic nitrogen fertilizers.


Asunto(s)
Fijación del Nitrógeno , Oryza , Fijación del Nitrógeno/genética , Oryza/metabolismo , Suelo , Edición Génica , Apigenina/metabolismo , Fertilizantes , Productos Agrícolas , Bacterias/genética , Nitrógeno/metabolismo , Grano Comestible/metabolismo , Biopelículas
4.
Gigascience ; 8(10)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31574156

RESUMEN

BACKGROUND: The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S. aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. RESULTS: We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both "Gilo" and "Shum" groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. CONCLUSIONS: The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family.


Asunto(s)
Genoma de Planta , Solanum/genética , Aclimatación/genética , Resistencia a la Enfermedad/genética , Sequías , Evolución Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Retroelementos , Secuencias Repetidas Terminales
5.
Planta ; 250(3): 989-1003, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31073657

RESUMEN

MAIN CONCLUSION: The African Orphan Crops Consortium (AOCC) successfully initiated the ambitious genome sequencing project of 101 African orphan crops/trees with 6 genomes sequenced, 6 near completion, and 20 currently in progress. Addressing stunting, malnutrition, and hidden hunger through nutritious, economic, and resilient agri-food system is one of the major agricultural challenges of this century. As sub-Saharan Africa harbors a large portion of the severely malnourished population, the African Orphan Crops Consortium (AOCC) was established in 2011 with an aim to reduce stunting and malnutrition by providing nutritional security through improving locally adapted nutritious, but neglected, under-researched or orphan African food crops. Foods from these indigenous or naturalized crops and trees are rich in minerals, vitamins, and antioxidant, and are an integral part of the dietary portfolio and cultural, social, and economic milieu of African farmers. Through stakeholder consultations supported by the African Union, 101 African orphan and under-researched crop species were prioritized to mainstream into African agri-food systems. The AOCC, through a network of international-regional-public-private partnerships and collaborations, is generating genomic resources of three types, i.e., reference genome sequence, transcriptome sequence, and re-sequencing 100 accessions/species, using next-generation sequencing (NGS) technology. Furthermore, the University of California Davis African Plant Breeding Academy under the AOCC banner is training 150 lead African scientists to breed high yielding, nutritious, and climate-resilient (biotic and abiotic stress tolerant) crop varieties that meet African farmer and consumer needs. To date, one or more forms of sequence data have been produced for 60 crops. Reference genome sequences for six species have already been published, 6 are almost near completion, and 19 are in progress.


Asunto(s)
Producción de Cultivos , Productos Agrícolas/genética , Genoma de Planta/genética , África del Sur del Sahara , Producción de Cultivos/organización & administración , Productos Agrícolas/crecimiento & desarrollo , Agricultura Forestal , Genómica/métodos , Genómica/organización & administración , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Árboles/genética , Árboles/crecimiento & desarrollo
6.
PLoS Biol ; 16(8): e2006352, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30086128

RESUMEN

Plants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico. This landrace is characterized by the extensive development of aerial roots that secrete a carbohydrate-rich mucilage. Analysis of the mucilage microbiota indicated that it was enriched in taxa for which many known species are diazotrophic, was enriched for homologs of genes encoding nitrogenase subunits, and harbored active nitrogenase activity as assessed by acetylene reduction and 15N2 incorporation assays. Field experiments in Sierra Mixe using 15N natural abundance or 15N-enrichment assessments over 5 years indicated that atmospheric nitrogen fixation contributed 29%-82% of the nitrogen nutrition of Sierra Mixe maize.


Asunto(s)
Microbiota/genética , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Zea mays/metabolismo , México , Microbiota/fisiología , Filogenia , Desarrollo de la Planta , Mucílago de Planta/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Suelo , Microbiología del Suelo
7.
Cell Host Microbe ; 22(2): 134-141, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28799899

RESUMEN

Analytic advances are enabling more precise definitions of the molecular composition of key food staples incorporated into contemporary diets and how the nutrient landscapes of these staples vary as a function of cultivar and food processing methods. This knowledge, combined with insights about the interrelationship between consumer microbiota configurations and biotransformation of food ingredients, should have a number of effects on agriculture, food production, and strategies for improving the nutritional value of foods and health status. These effects include decision-making about which cultivars of current or future food staples to incorporate into existing and future food systems, and which components of waste streams from current or future food manufacturing processes have nutritional value that is worth capturing. They can also guide which technologies should be applied, or need to be developed, to produce foods that support efficient microbial biotransformation of their ingredients into metabolic products that sustain health.


Asunto(s)
Tecnología de Alimentos , Alimentos , Microbioma Gastrointestinal , Agricultura , Animales , Dieta , Manipulación de Alimentos , Ingredientes Alimentarios , Estado de Salud , Humanos , Valor Nutritivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...